
A GRAPHICAL INTERFACE TO MULTI-TASKING PROGRAMMING PROBLEMS

David S. Alijani, Nitin Mehra
Graduate Studies Program in CIS

Southern University of New Orleans
6400 Press Drive

New Orleans, LA 70126
(504) 284-5423

dalijani@ix.netcom.com
nitinmehra@bigfoot.com

Abstract

The graphical and visual representation of an environment enhances productivity and speeds up development
time. Concurrency is the simultaneous execution of several processes within a system. In a centralized
system, interleaving the execution of each process simulates concurrency and most of the typical
development environments work within an uni-tasking mode limiting the users to one programming
language. The foundation of this project lies on the basis of the multi-tasking environment, at the operating
system level. An important consideration taken into account is the ability to run platform- independent
programs using a common graphical user interface. The application (named ‘RunApp’) is developed using
Microsoft Visual Basic. It is based on the concept of linear programming in a multi-development
environment. Currently, this application incorporates the Visual C++ and Visual Basic programming
environment by providing editing, compiling, and execution capabilities. RunApp possesses the capability of
searching web-oriented resources, which will aid developers to find information about different environments
through the Internet. This tool will also help the developer in downloading and updating the latest controls,
modules, DLLs, etc. directly into their respective environments such as Visual Basic or Visual C++. This
application provides all the editing features of any basic word processor. RunApp shares the personality of a
development environment, debugging tool, information access, and application execution module. It is a
standalone interface that couples multiple programming environments into one entity with capability of
multi-tasking.

INTRODUCTION

Microcomputers have become remarkably faster over a short period of time and large networks of
microcomputers are cheaper than mainframe computers. Today’s computer systems are extremely complex
when viewed in all their detail (Brookshear, 1997). The increase in the number of computers accompanied
by the increase in the number of users has led to the need to have simple and standard user interfaces. The
graphical and visual representation of an environment enhances productivity and speeds up development
time. Moreover, many administrative tasks are made easier by using graphics instead of plain text to display
information (Whitehead and Maran, 1997).

An environment is the actual “feel” (available resources, memory variable values, data values, etc.) of
the situation that describes a particular process at any given point in time. An environment encompasses
tools, database or files, people, hardware, a network, operating systems, standards, and myriad other
components. Concurrency is the simultaneous execution of several processes within a system. In a
centralized system, interleaving the execution of each process simulates concurrency. The shared-memory
architecture provides a very efficient medium for processes to exchange data (Geist, Beguelin, Dongarra,

Manchek, and Sunderam, 1996).

Most physical user interfaces to electronic systems are tailored to the greatest common denominator
of human experience rather than a multiplicity of human experience. A few interfaces, on the other hand, are
dynamically tailored to an individual person's needs (Eustice, Lehman, Morales, Munson, Edlund, and
Guillen, 1999). Most typical development environments work within an uni-tasking mode limiting the users
to one programming language.

Intelligent Graphical User Interfaces can simplify a lot of complex processes and reduce the actions
that one needs to perform to execute tedious tasks. The objective of this project was to develop a graphical
user interface (GUI) that addresses the multi-tasking problems. In many cases, overcoming the hurdles
requires the determination of conflicting processes between events in the system. Since perfect
implementation and functionality is impossible, several debugging options need to be included.

METHODOLOGY

There are many challenges to be resolved with the implementation of an application developer system. The
first challenge is the selection of an operating system that allows the user to be ignorant of the multiple
resources involved. The application, named RunApp, should be able to handle multi-tasking and intelligent
resource management that is supported by Microsoft's Windows operating systems. Some of the other
hurdles include implementation of the following.

* Error detection and error handling
* Proper resource allocation
* Assurance of data consistency and
* Providing a fault tolerant system

One of the key characteristics and challenges in the design of this system is the multi-tasking
operating system. The RunApp system is the software layer on the operating system that simplifies the task
of programming. This system appears as a standard application program, but it runs at the kernel level
supporting multiple environments.

 Two of the other major concerns in the design of the current system are error detection and error
handling. In a multi-environment system, when one or more components (such as memory, client, processes,
kernel, etc.) crashes, the failure is fatal. Usually this failure is instantly detected and can be handled
appropriately. In single environment system as in the case of current system, error detection and error
handling are much more complex.

 The splash screen as shown in figure 1 is the first screen that introduces the application and provides
the user with the version information. This screen stays up until the entire application is loaded in the
background. Once RunApp is loaded into memory, the splash screens disappears from the screen and
unloads from memory. The next screen that is loaded is the user menu within the application module. As
can be seen in figure 2, this is a more of a startup screen that enables the user to pick an option/task that
he/she would desire to perform. A convenience advantage of RunApp is that once the user selects a task, it
would directly perform that task without having to navigate through all other menus and options. The ‘Exit’
button on this screen only exits the menu and not the application. If the user exits, he/she would be brought
to the main screen as shown in figure 3. This would also directly load Visual Basic or Visual C++ if the user
desires that option and the corresponding application have been pre-loaded on the computer. The ‘Run a

program’ option allows the user to directly execute a pre-compiled executable file that has been created by
him/her. The ‘new’ file option opens a new source file in which the user can write code for C, C++, or
Visual Basic.

 Figure 3 depicts the main screen of the application. The entire RunApp environment/application is
contained within a single process. A process is a program in execution (Silberschatz, Abraham, and Galvin,
1998). All processes in the development environment belong to the parent process, which is ‘RunApp.’
Every sub-process (thread) will show as a standard task in the window’s environment (under windows task
manager) and will be assigned with a unique task id by the operating system, since it is a new parent process
initiated by the RunApp. A process encompasses the current status of the activity, called Process State
(Microsoft Corporation, 1999a). Multiple processes of RunApp can be initiated at the operating system level
(since Windows '95 supports multitasking) and each process will have its own environment, allocated
memory and be completed independent of any other task. This is accomplished by the way that the RunApp
id is developed under a Single Document Interface (SDI) environment.

 The main screen contains the menu bar, toolbar, and status bar that follow all the rules and aspects of
a standard window’s application. All the rich-text editing features designed within this application are
contained in the toolbar along with other file and print functions. All documents opened for editing are
displayed within this main window. The option to view and edit them in rich-text format is left to the user
but the source files will only be saved in text format. Any new application or development environment is
spawned as a new process/task at the operating system level and can continue to execute independent of
RunApp, if desired.

 RunApp lets the user open any source file (figure 4) from a local or network drive and load it into a
rich-text editing environment. These functions can be performed from within RunApp. Multiple files can be
edited and compiled simultaneously. The current file versions supported are: C source files, C++ source
files, Visual Basic modules, Visual Basic projects and Visual C++ files. Using a file pointer, which points to
a structure that contains information about that file (Kernighan and Ritchie, 1996), accesses C files. A
similar method has been adopted to access the other types of files. Other file formats can be added to this
application dynamically or by adding the filters to the Visual Basic code of this module. One can also cut
and paste text and data from one file to another in the same manner as it is done in any other word processor.
Similar functionality was developed to save information, set the font, view help topics as well as to print
source code or program output. All modules have been developed using Microsoft's Windows Application
Programmer's Interface (Windows API) and have been modified to suit this application by adding and
customizing its features to comply with the file formats for RunApp.

The Edit menu provides the user with the functionality to copy, cut, and paste text between source
files or to the windows clipboard. Users can also cut and paste text between environments as Visual Basic
and Visual C++. This menu also contains the font option, which has been described earlier. All the
functions contained in this menu are identical to the ones in any other window's application. In this manner,
the interface can be kept simple to the user by avoiding complexity.

The available ‘Environments’ are shown under the 'Tools' menu (currently – Visual Basic and Visual
C++). The menu, when activated, will load the appropriate development environment if and only if it has
been pre-loaded on the machine being used. The installed development environments (i.e., Visual Basic or
Visual C ++) can be used to compile and create executable files of any source code written via RunApp. All
the memory management, context switching, and environment variables are loaded in the background. The
user will be provided with the option of directly loading the source file in the selected environment. The
executable file can be initiated/run by selecting the ‘Run Program’ menu. This menu also contains shortcut
keys used to initiate the environments directly without having to navigate. The menu provides the user with
the list of all the programs that are available and executable. The user-created executable file must have a

postfix indicating as an executable file to be run via RunApp. Time-sharing used in a multi-user system is
known as multitasking, in reference to the illusion of more than one task being performed simultaneously
(Brookshear, 1997). This will execute every program in an independent multitasking environment and
multiple programs can be executed simultaneously. Each program will have its own instance, and hence,
multiple copies of the same program can be executed at the same time and compared for outputs. The source
files can be debugged by going back to the appropriate environment and recompiled. An example has been
described later in this paper for running Visual Basic and Visual C++ simultaneously.

RunApp invokes either the Visual Basic or Visual C++ environment when the corresponding
selection is made from the Tools menu. Visual Basic will provide the user to start up any new type of
application project as desired. This option will only be provided if the user initiates the VB environment
without supplying an existing source file, VB form, or module. The same kind of process is followed if the
Visual C++ environment is invoked.

Figure 5 depicts an example where RunApp supports a cross environment execution. Here the
interface shows how the user can develop and execute two source files in different environments
simultaneously. This application allows the user to edit the program files without ever having to actually go
into Visual Basic or Visual C++ itself. The right editor has a section of a C++ program source code loaded in
it while the one on the left has a Visual Basic program.

RunApp can also be used to invoke the in-built web browser from the View menu. The browser can be used
to refer to development information on the web or use the on-line Microsoft Developer’s Network (Microsoft
Corporation, 1999b, 1999c) help features. One does not have to have a web browser installed on the
computer as the Internet Explorer browser control has been incorporated into this application itself. The
RunApp Setup program installs all the required dynamic link libraries and reference files. The browser
contains only the basic features for surfing.

The help module can be invoked from the help menu bar from the main screen. This loads the help
file in the standard windows help module by using the windows application programmer’s interface (API)
function calls to the operating system. Here the user can use the Index, Search and Find options to locate the
help topic that he/she desires. There is also an option that will load the help file in the find mode directly.
The help process runs independent of the application as a separate process. It has to be terminated explicitly.

Figure 6 shows the system information tool. The Microsoft System Information is invoked by calling
an API function. This tool reads information from the kernel, system repository and windows registry. It is
an information tool that supplies the user with information on system resources, tasks, threads, DLL’s
(dynamic link library), registry settings, active modules, INI settings, etc. This information can be useful for
the programmer to monitor memory usage and task/process distribution. This tool runs as an independent
process so it does not conflict with the RunApp application environment. In this manner, it can display
information about RunApp too (shown). The system information is part of the window operating system.
RunApp just links to this tool and helps display the information.

The Setup program as shown in figure 7 is created along with this project to install and deploy the
application on a computer. This setup program is created using Visual Basic’s deployment kit and will install
and the required DLLs, files, programs, data, etc. required to execute RunApp. This setup also contains an
Uninstall utility program that can remove the entire application from a computer. All the files installed are
logged by the setup program and removed by referring to this log file. The Setup program gives the user the
choice on where to install the files and icons.

CONCLUSIONS

This application was designed and developed using the Windows API functions and sophisticated Visual
Basic dynamic objects and Window controls. The main characteristic of this system is the transparency it
provides to its user about the existence of multiple processors and environments. This application can be
distributed using a setup program developed and provided along with this project. This setup program will
install all the necessary components required to run RunApp such as dynamic link libraries, support files,
help file, and application executables in a user-desired directory on any IBM compatible personal computer.
Moreover, the window registry variables, program group icons, and system initialization files will be
added/modified in the computer as well. The application is compiled as a 32-bit executable and requires
Windows '95/'98/NT or later operating systems to run. There is an uninstall utility that comes along with this
program that will undo and delete all the installed components, files, registry settings, etc. The uninstall
program will not remove compiled executables or program source files that have been created by the user.
This information will be untouched and retained. The following benefits were identified after the
development of the RunApp application.

â RunApp creates a fault tolerant and secure application development environment.
â RunApp is flexible and can be molded/customized for specific user requirements.
â This application can be used as a sophisticated development tool.
â The system provides the user with high concurrency.

 This project has immense amount of scope and opportunity for future enhancements and
development. The primary enhancement that can be made to this system is incorporating additional
programming environments such as PowerBuilder, Delphi, FoxPro, etc. Moreover, fourth generation
languages can be engulfed into this such as SQL, ProC, and others. The graphical user interface can be
enhanced to support intelligent editing and file processing. A more concise and detail on-line help system
and documentation can be added to RunApp. Advanced options such as personalized user settings, login,
and auditing options and version control can be added to make this application more secure. This application
can be shared over a network by adding distribution and concurrency methods to enhance speed and share
resources.

REFERENCES

 Brookshear. (1997). Computer Science – An Overview (5th ed.). Addison-Wesley.
 Eustice, Lehman, Morales, Munson, Edlund, and Guillen. (1999). A Universal Information

Appliance.
 Geist, Beguelin, Dongarra, Manchek, and Sunderam. (1996). PVM: Parallel Virtual Machine.

Cambridge: The MIT Press.
 Kernighan and Ritchie. (1996). The C Programming Language (2nd ed.). AT&T Bell Labs and

Prentice Hall.
 Microsoft Corporation. (1999a). Application Programmer’s Interface (API). Microsoft Corporation –

Windows '98/NT.
 Microsoft Corporation. (1999b). Visual Basic Technical Support – MSDN. [Online]. Available at:

http://msdn.microsoft.com/vbasic/technical/support.asp
 Microsoft Corporation. (1999c). Visual Basic Technical Support – MSDN. [Online]. Available at:

http://msdn.microsoft.com/vbasic/technical/support.asp
 Silberschatz, Abraham, and Galvin. (1998). Operating System Concepts. Addison-Wesley.
 Whitehead and Maran. (1997). Teach Yourself Networking Visually. IDG Books Worldwide, Inc.

Figure 1. Splash Screen

Figure 2. User Menu

Figure 3. Main Screen

Figure 4. Open File Window

Figure 5. Cross-environment Execution

Figure 6. System Information

Figure 7. Setup for RunApp 2000

